Progress in the Mainz effort to compute a_{μ}^{HLBL} from the lattice

Renwick Hudspith¹

E-H. Chao¹, A. Gerardin², J. Green², H. Meyer¹

¹Johannes Gutenberg Universitat Mainz

²DESY Zeuthen

September 11, 2019

We see the hadronic computation as a 4-pt function in position space

$$j_{\mu}(x)j_{\nu}(y)j_{\sigma}(z)j_{\lambda}(0) = (\bar{\psi}\gamma_{\mu}\psi)(x)(\bar{\psi}\gamma_{\nu}\psi)(y)(\bar{\psi}\gamma_{\sigma}\psi)(z)(\bar{\psi}\gamma_{\lambda}\psi)(x_{0})$$

And the QED part as something that can be done in continuum

4	2 + 2	3 + 1	2 + 1 + 1	1 + 1 + 1 + 1
6	3	8	6	1

Table: Number of contractions needed for each type of diagram

The three connected contributions we wish to compute. Corresponding to contractions 1,2, and 3. From top left, top right, and bottom.

$$\begin{split} a_{\mu} &= \frac{-me^6}{3} \int d^4y \int d^4x \int d^4z \; \mathcal{L}_{\rho\sigma:\mu\nu\lambda}^{(i)}(x,y) z_{\rho} \langle j_{\mu}(x) j_{\nu}(y) j_{\sigma}(z) j_{\lambda}(0) \rangle \\ a_{\mu} &= \frac{-me^6}{3} 2\pi^2 \int dy \; \underline{|y|^3 \int d^4x \int d^4z \; \mathcal{L}_{\rho\sigma:\mu\nu\lambda}^{(i)}(x,y) z_{\rho} \langle j_{\mu}(x) j_{\nu}(y) j_{\sigma}(z) j_{\lambda}(0) \rangle} \\ \underbrace{f(|y|)} \end{split}$$

Selecting diagram 2 as our reference $(\Pi_{\mu\nu\sigma\lambda}^{(4)}(x,y,z,0))$ we can perform a change of variables to rewrite the **connected part** of the integral:

$$a_{\mu}^{(c)} = \frac{-me^6}{3} 4\pi^2 \int d|y||y|^3 \int d^4x \left[(\mathcal{L}_{\rho\sigma;\mu\nu\lambda}^{(i)}(x,y) + \mathcal{L}_{\rho\sigma;\nu\mu\lambda}^{(i)}(y,x) - \mathcal{L}_{\rho\sigma;\lambda\nu\mu}^{(i)}(x,x-y)) \int d^4z \, z_{\rho} \Pi_{\mu\nu\sigma\lambda}^{(4)}(x,y,z,0) + \mathcal{L}_{\rho\sigma;\lambda\nu\mu}^{(i)}(x,x-y) x_{\rho} \int d^4z \, \Pi_{\mu\nu\sigma\lambda}^{(4)}(x,y,z,0) \right]$$

The three 2+2 diagrams that contribute to the HLBL (numbered 1,2,3 from top left, top right, and bottom).

Defining

$$\Pi^{(2)}_{\mu\nu}(x,y) = \text{Tr}[\bar{S}(x,y)\gamma_{\mu}S(x,y)\gamma_{\nu}] - \langle \text{Tr}[\bar{S}(x,y)\gamma_{\mu}S(x,y)\gamma_{\nu}] \rangle$$

The **2+2 contribution** to a_{μ} can be written as

$$a_{\mu}^{(2+2)} = \frac{-me^{6}}{3} 2\pi^{2} \int dy |y|^{3} \int d^{4}x \, \mathcal{L}_{\rho\sigma:\mu\nu\lambda}^{(i)}(x,y) \int d^{4}z$$

$$z_{\rho} \left(\Pi_{\sigma\nu}^{(2)}(z,y) \Pi_{\mu\lambda}^{(2)}(x,0) + \Pi_{\mu\nu}^{(2)}(x,y) \Pi_{\sigma\lambda}^{(2)}(z,0) + \Pi_{\sigma\mu}^{(2)}(z,x) \Pi_{\nu\lambda}^{(2)}(y,0) \right)$$

The third diagram is unpleasant so we rewrite...

$$\begin{split} a_{\mu}^{(2+2)} &= \frac{-me^{6}}{3} 2\pi^{2} \int_{y} dy |y|^{3} \int_{x} d^{4}x \\ &\left[\left(\mathcal{L}_{\rho\sigma:\mu\nu\lambda}^{(i)}(x,y) + \mathcal{L}_{\rho\sigma:\nu\mu\lambda}^{(i)}(y,x) \right) \Pi_{\mu\lambda}^{(2)}(x,0) \int_{z} d^{4}z \, z_{\rho} \Pi_{\sigma\nu}^{(2)}(z,y) \right. \\ &\left. + \mathcal{L}_{\rho\sigma:\mu\nu\lambda}^{(i)}(x,y) \Pi_{\mu\nu}^{(2)}(x,y) \int_{z} d^{4}z \, z_{\rho} \Pi_{\sigma\lambda}^{(2)}(z,0) \right] \end{split}$$

Have several choices for subtracted kernels [Blum et.al '17] all built from the infinite volume $\mathcal{L}^{(0)}$ suppressing indices as they are all the same!

$$\mathcal{L}^{(1)}(x,y) = \mathcal{L}^{(0)}(x,y) - \frac{1}{2}\mathcal{L}^{(0)}(x,x) - \frac{1}{2}\mathcal{L}^{(0)}(y,y)$$

$$\mathcal{L}^{(2)}(x,y) = \mathcal{L}^{(0)}(x,y) - \mathcal{L}^{(0)}(x,0) - \mathcal{L}^{(0)}(0,y)$$

$$\mathcal{L}^{(3)}(x,y) = \mathcal{L}^{(0)}(x,y) - \mathcal{L}^{(0)}(x,x) + \mathcal{L}^{(0)}(0,x) + \mathcal{L}^{(0)}(0,y)$$

Sanity check:

Test different kernels on the infinite volume lepton-loop

Figure: Lepton loop integrands for our various QED kernels

The **broadening** of the integrand for $\mathcal{L}^{(3/2)}$ is concerning $\to Typical$ lattice dimensions are of the order of a few fm.

The **large peak** of the integrand for $\mathcal{L}^{(1/0)}$ at small |y| is concerning \to This could lead to significant discretisation effects

Question

Can we keep the benefits of the $\mathcal{L}^{(2)}$ subtraction whilst making the integrand peak at low |y|?

The **broadening** of the integrand for $\mathcal{L}^{(3/2)}$ is concerning \to *Typical lattice dimensions are of the order of a few fm.*

The **large peak** of the integrand for $\mathcal{L}^{(1/0)}$ at small |y| is concerning \to This could lead to significant discretisation effects

Question

Can we keep the benefits of the $\mathcal{L}^{(2)}$ subtraction whilst making the integrand peak at low |y|?

Yes! We are practically *free to do whatever we want* to terms like $\mathcal{L}(x,0)$ as they don't contribute to the integral

$$\begin{split} \mathcal{L}^{(2:\lambda)}(x,y) &= \mathcal{L}^{(0)}(x,y) - \partial_{\mu}^{(x)} \left(x_{\alpha} e^{-\lambda m_{\mu}^{2} x^{2}/2} \right) L_{\rho\sigma:\alpha\nu\lambda}^{(0)}(0,y) \\ &- \partial_{\nu}^{(y)} \left(y_{\alpha} e^{-\lambda m_{\mu}^{2} y^{2}/2} \right) L_{\rho\sigma:\mu\alpha\lambda}^{(0)}(x,0) \end{split}$$

 λ is a dimensionless tuneable parameter $\lambda \to 0$ is $\mathcal{L}^{(2)}$ and $\lambda \to \infty$ is $\mathcal{L}^{(0)}$

Figure: Lepton loop integrands for our various QED kernels

Figure: Lepton loop integrands for some choices of λ

- Integrals become discrete sums
 - Discretisation effects
 - Finite volume effects
- CLS n_f = 2 + 1 Wilson-Clover ensembles with open temporal boundary and 4 local currents
 - Focus on $SU(3)_f$ symmetric-point ensembles for fully-connected and 2+2 contributions $(m_\pi = m_K \approx 416 \text{ MeV}, a = 0.0864(11) \text{ fm}, m_\pi L = 5.8)$
- ▶ Point sources along direction (0,2,2,2)
 - 1. Two sources gives both +y and -y
 - 2. Self averages per |y| of L/2 exploiting periodicity in spatial directions
- ▶ Also investigate (3, 1, 1, 1) direction for volume effects
 - 1. Larger |y| available but fewer self-averages

Figure: Fully-connected integrand for direction (0,2,2,2) (points shifted for clarity)

Figure: Fully-connected contribution to $a_\mu^{\rm HLBL}$ and its corresponding finite-volume prediction

Figure: Integrated result up to a cut-off $|y|_{\mathsf{Max.}}$ along direction (3,1,1,1)

Compute our finite-volume corrected result at some y_c where the integrand is positive

$$a_{\mu} = a_{\mu}^{\mathsf{lattice}}(|y| < y_c) + \underbrace{a_{\mu}^{\mathsf{\Pi_0}}(\infty, |y|) - a_{\mu}^{\mathsf{\Pi_0}}(L, |y| < y_c)}_{\mathsf{FS}_{\mathsf{Corr}}}$$

L/a	Direction	a [fm]	y_C [fm]	FS_Corr	$a_{\mu} imes 10^{11}$
32	(0,2,2,2)	0.0864	1.79	20.5	102.5(1.1)(5.1)
32	(3, 1, 1, 1)	0.0864	3.0	8.8	79.7(4.4)(2.2)
32	(3,1,1,1)	0.0643	2.5	22.9	97.0(4.0)(5.7)
48	(3,1,1,1)	0.0643	3.0	5.1	97.2(4.2)(1.3)

Table: Fully-connected, finite-size-corrected $SU(3)_f$ symmetric-point results with $\lambda=0.4$

We achieve consistent finite-size-corrected results for our finest lattice

Renwick Hudspith - Progress in a_{μ}^{HLBL} from the lattice

Figure: Preliminary Integrated 3+1 contribution from an ensemble with light pion mass, and direction (3,1,1,1)

- ▶ It is possible to have more choice for our QED kernel
- **ightharpoonup** By considering different λ we can make the integrand narrower
 - 1. This helps to reduce finite volume effects
 - 2. This significantly reduces noise in the 2+2 contribution
- We believe that we have finite-size effects under control for the symmetric ensembles
- ► The error in the measurement is **currently dominated** by the 2+2 contribution
- ► The 3+1 contribution appears small and consistent with zero within our statistical resolution